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J .  Phys. A: Math.  Gen.  18 (1985) 1203-1208. Printed in Great  Britain 

Smoothed Coulomb potentials for quantum mechanics 

D A Dubin 
Faculty of Mathematics,  The Open  University, Milton Keynes, U K  

Recieved 24 July 1984 

Abstract. We consider the quantum systems of N point particles moving in R' under  the 
influence of either their mutual Coulomb potential V or a smooth potential V,, equal to 
V whenever all interparticle distances are greater than I / n  a n d  equal to zero whenever all 
interparticle distances are  less than I / n  - l / n 2 .  We prove that the dynamical theory based 
on V,, converges to that based on  V as n increases indefinitely. 

The fundamental interaction at the atomic level is the Coulomb force, and elementary 
quantum mechanics is its study. Other potentials are considered in quantum mechanics 
as well. They correspond to various complex phenomena, idealised, which are ulti- 
mately derivable from Coulomb forces, in principle at least. These idealisations, whilst 
important for descriptive purposes, sometimes introduce mathematical singularities 
which are not present in the underlying Coulombic description. For example, there 
are no infinitely deep wells, no infinitely high barriers, and no absolutely hard walls. 
Moreover, there are no perfectly square wells or barriers. These are convenient 
replacements for very deep wells, very high walls, and rounded edges on the potentials. 

Another type of derived singularity is encountered in  molecular theory. Here one 
finds potentials of the form - F6. However, such an expression is an  effective potential 
obtained from Coulomb forces under certain approximations. 

Consideration of these and other standard examples leads us to the view that the 
analytic properties of all quantum mechanical quantities for elementary quantum 
systems are derivable from the generic system of N point particles of masses m, moving 
in R3 under the influence of their mutual Coulomb interactions (i, j N )  

v,,(x,-x,)=e,e,/1.~,-xX,~. ( 1 )  

By elementary quantum systems we mean the aspects of quantum theory valid for a 
finite number of degrees of freedom, and for energies less that those of nuclear theory. 
For larger energies a transition to quantum field theory occurs, and the mathematical 
considerations are quite different. 

The Coulomb potentials ( 1 )  are not actually compatible with this energy limit. 
More precisely, effects arising from distances less than, say, the radius of a nucleon 
are outside the province of elementary quantum mechanics as we have defined it. We 
propose, therefore, to replace the Coulomb potential by a smoothly cut-off approxima- 
tion. This will be justified only if we can prove that the cut-off theory converges to 
the Coulomb theory as the cut-off is removed. A proof of this convergence is the 
purpose of this paper. 

Before proving our assertion, we wish to remark that an important consequence 
of our work relates to the rigged Hilbert space formulation of quantum mechanics. 
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Briefly, we take our space of wavefunctions to be the Schwartz space < Y ( R d j  of 
C"-functions of polynomial decrease at infinity, so that . Y ( R " )  c L ' ( R d ,  c Y'(!Rd) 
forms a rigged triple. The algebra of observables may then 'se taken to be the set d 
of iinear operators from Y ( R d )  to itself whose adjcints also map Y(Rd)  to itself. This 
is a unital topological *-algebra of unbounded operators when equipped with the 
topology inherited as a subspace, via kernels, of tY'(R2d).  Recall that the kernel 
representation associates a distribution B E  Y ' ( R ' d )  to every observable b E SI through 
the formula 

= I B ( x ,  ;.lf(y) dy, f €  Y(Rd 1. 

The coordinates and momenta are operators in d, and the usual operator equations 
of quantum mechanics can be justified as continuous maps from Y ( 3 ' )  to itself. 

The states of the system, in this formulation, are the positive trace-normalised 
continuous iinear functionals on d. It is a mathematical consequence that all states 
are given through density matrices: the wavefunctions, the elements of Y(Rd) ,  are 
exactly the extrema1 states. States also have a kernel representation. The kernel of a 
state p will be a smooth function R E Y(iW"). Written in terms of kernels, the expecta- 
tion value of an  observable b in the state p is 

p ( b )  = 11 R ( x ,  y ) B ( x ,  y )  dx dy. 

Note that every observable has a finite expectation value in every state (cf Lassner 
1972, 1980, Lassper and Uhlmann 1978, Lassner 1978, Roberts 1966a, b, Schmiidgen 
1978, 1979, Sherman 1968, Woronowicz 1970). 

Suppose we replace the Coulomb potential by a potential in the class 

@ = { V E  c"(R'): ~ u p , , ~ + ~ f ( x ) l  <CO, n EN'}. (2) 

Then (Hunziker 1966) the Hamiltonian is an  element of d, and the Hamiltonian 
generates a time translation group under which Y is invariant. In the Heisenberg 
picture, the dynamics is described by an automorphism group of d. 

We start our analysis with some necessary definitions. 

Definition 1. Let h ,  E 9(R') be a chosen function such that h,  = 1 on [ 0 ,  l / n  - l / n ' ]  
and h, 0 on [ I / n ,  E). The cut-off Coulomb function for given n is 

uiT'(x,-x,)=[1-h,(lx,-x,l)lu,(x,-x,). (3) 

V ( X , ,  . ' . , X N )  = 1' t',,(x, - x, ) ,  

V , ( x  I ) . .  . , x ~ ) = ~ ' t ' y ) ( x , - x , ) ,  ( 4 b )  

Letting I' stand for the sum over non-coincident pairs ( i , j ) ,  the potentials are 

(4a)  

and determine Hamiltonians H = ( T + V ) * * ,  H, = ( T + V,)** respectively, where T is 
the kinetic energy, the self-adjoint Dirichlet Laplacian. By U (  t ) ,  respectively U""( t ) ,  
we mean the unitary groups ( t  E R) whose generators are H, respectively H,,. 

The cut-off Coulomb function U;) is seen to be equal to q, for ( x ,  - x, I > 1 / n and 
is equal to zero for / x ,  -x , l<  l / n  - l / n 2 ;  it is Y-class, so that V,, E @. It is known that 
V is relatively T-bounded, with T bound equal to zero; the same proof holds for V,,. 
Hence D ( H )  = D( H,,) = D (  T) (Kato  1966). For the purposes of our result below, just 
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which function h,  is chosen is immaterial; it suffices to know that one such exists 
(Treves 1967). 

Proposition 2. For every f~ Y(iW’&’) and all t E R, the time translations converge in the 
L’ se.ise: 

Iim ) j U ‘ ” ’ ( t ) f -  U ( t ) f l ) , = O .  (5) 
“-X 

F.roo$ We shall consider the equivalent statemer.t 

lim 1 1  U‘”’ ( - t )U( t ) f - . f / I ,=O.  (5’) 
n - r  

As in Cook’s method in scattering theory (Reed and Simon 1979) we have the integral 
inequality 

1 1  Ufn’(-t)U(tjf--f lJzS d r  1 1  U‘”’ ( s ) [V-  V,]U(s)flIz 

Let a pair ( i ,  j )  be fixed; by introducing the new variables y, = xk ( k  # i, j ) ,  y ,  = xi - xj, 
y ,  =(xi+x, ) /2 ,  each term ir, the integrand can be reduced to an iw’ expression by 
integrating over all variables except y,. If we write 

l . A . y ( ~ t ) ~ 2 =  5 / [U(s ) f l (y I , .  . . , y,\O/’dy, . . . d.?,. . . d h . ,  

ll(v,,-uj:’)U(sjfll,= ll(!~,,-oi;))L,~ii;. 

the circumflex indicating omission, then 

The prime indicates that only the variabje y ,  is under consideration. Now as q, - u t ’  
has support in the compact ball {x E R’: 1 . ~ 1  s l/n}, we can write 

ll(ut,-~~,’”~.A,511;~ lib, -d;’)ll;llL,711~. 

i!gll> 5 n ( 2 n ) - 3 = I l g / I ; +  llAtgl19. 

Now we use the elementary inequality (cf Simon 1971 for one dimension) 

This is obtsined from l /g/ l> < ( 2 ~ ) - ~ ” I l g ’ l l {  for the Fouriertransform, by multiplying 
and dividing g’ by 1 + 1 p f ,  using the Cauchy-Schwarz inequality and inverting the 
Fourier transform. From the relative T boundedness of V, UJE D( T )  and so we have 
existence for 

l l ( ~ ~ , - . ~ ~ ; ’ ) ~ ( s ) f l l ~ ~  ( 2 n l - l  %Ij;,Ji;+ I l A J , , l I J ~  ( 2 n ) - ” ’ ( ( / /  ~ ( s ) f I l ? +  l l ~ ~ ( s j f I l J .  

We invoke relative boundedness again: there exists a positive constant c such that for 
all g E D( T ) ,  

II VglI2S til Tg//z+ cllgll:. 

Rearranging so as to gather all TU(,;)-f  terms togethei yields 

i / T U ( s ) f / / 2 ~  l i f fU(s) j ’ i i2+ Ii VU(s)f/l,, i/ ( s ) f  l l  2 2 i I H f  i i + 2 c li f 11 2. 
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When we state that the V,, theory converges to the V theory we mean first of all 
proposition I .  We also mean that the time evolved expectation values of the V, theory 
converge to those of the V theory. Now to each symmetric operation in d corresponds 
a generalised spectral decomposition by means of at least one positive contraction 
valued Bore1 measure {E(A): A E B  or (R)} (cf Riesz and Sz Nagy 1960, Dubin and 
Sotelo 1984). The expectation values of the theory are (.L E (  A ) f )  for all f~ Y and all 
such spectral families E of the theory. 

Proof: For brevity we introduce the notation 

G , ( t ) =  U'"'(t)f- U ( t ) l :  

Now 

( G, ( t ), E ( A )  G, ( 1 ) )  = ( U'" '( t )A E ( A )  U '  " I (  t ) f )  + ( U (  t 11; E ( A )  U ( r )J) 
- ( U ' " ' (  t I f ;  E ( A )  U (  t I f )  - ( U (  t 1.L E ( A )  U ' " ' (  t l f ) .  

By the Cauchy-Schwarz inequality, the last two terms each converge to 
( U (  t ) f ;  E ( A )  U (  t ) f ) ,  from proposition I .  In the same way, since G,( t )  -+ 0, the left 
side converges to zero, and so (8) follows. 

Finally, the convergence of the V,, to the V theory also means the convergence of 
the spectra of the Hamiltonians in the following sense. 

Proposition 4.  In the generalised strong sense of Kat0 (19661, 

Hn + H,  

and the resolvents converge similarly, provided Im( 2 )  # 0: 

Rn(z)  + R ( z ) .  

Hence every open subset of R containing a point of the spectrum of H contains at 
least one point of the spectrum of H ,  for large enough n. The corresponding spectral 
projections converge in the strong sense: P,,( t ,)  -+ P (  t )  for all t,, + r .  

For the case of two particles, consider the relative motion. To each eigenvalue 
- l / n 2  ( n  is now the principle quantum number), there corresponds n eigenvalues 
E ' P ' ( l ,  n), . . . , E' , , ' (n ,  n )  of H,, in the neighbourhood of - I / n 2 .  Thus, the n'-fold 
degeneracy of - I / n 2  is partially broken, each E i P '  being n-fold degenerate due to 
rotational symmetry. For p + E, E' , , ' ( j ,  n )  + - I / n 2 ,  for all j .  
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Proof: Our estimate (7)  with s = 0 implies that l l (  H - H,)fIl,+ 0 for all f~ 9. As Y is 
a core for H and H,, the first part follows from Kat0 (1966, VIII.1, Cor 1.6). The 
second part then follows from Kato (1966, VIII.2, th. 1.14). For two-particle relative 
motion, the spectrum of H below zero consists only of isolated eigenvalues of finite 
multiplicity. Moreover the forms associated with the H,, increase to the H form. Hence 
th. 3.15 of Kato (1966, VIII.4) applies. 

We have not analysed the N 3 3 case for the stability of isolated eigenvalues. 
In conclusion, then, we have shown that the H ,  theory converges to the H theory. 

I f  we use the H,, theory we can utilise the rigged Hilbert space formalism, which is 
H ,  dynamically stable. 

In essentially all physics literature, it is taken as axiomatic that Hilbert space is 
the proper arena for quantum mechanics. We pointed out at the beginning of this 
note that there are cogent reasons for using the rigged Hilbert space formalism, based 
on choosing the wavefunctions to be smooth functions belonging to Schwartz space. 
This ensures finite expectation values for all observables: position, momentum, energy, 
etc, in any state. 

The significance of the result given in this paper is that for the Coulomb potential, 
arguably the most fundamental potential, one can remain within the Schwartz space 
by a physically justified cut-off at small distances. This cut-off does not affect the 
elementary quantum properties derived within the usual Hilbert space context, and 
the numerical values of the cut-off theory converge to those of the pure Coulomb 
theory as the cut-off is removed. 

Were we to consider potential wells and barriers, the same technique used in the 
proof of proposition 2 shows that the rounded well, or barrier, theory converges to 
that of the square well, or barrier, theory as the smoothing is removed. 
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